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The central inverse square law force problem is an interesting one in physics.
It is interesting not only because of its applicability to a great deal of situations
ranging from the orbits of the planets to the spectrum of the hydrogen atom,
but also because it exhibits a great deal of symmetry. In fact, in addition to
the usual conservations of energy E and angular momentum L, the Kepler
problem exhibits a hidden symmetry. There exists an additional conservation
law that does not correspond to a cyclic coordinate. This conserved quantity is
associated with the so called Laplace-Runge-Lenz (LRL) vector A:

A = p×L−mkr̂ (LRL Vector)

The nature of this hidden symmetry is an interesting one. Below is an attempt
to introduce the LRL vector and begin to discuss some of its peculiarities.

A Some History

The LRL vector has an interesting and unique history. Being a conservation
for a general problem, it appears as though it was discovered independently a
number of times. In fact, the proper name to attribute to the vector is an open
question. The modern popularity of the use of the vector can be traced back to
Lenz’s use of the vector to calculate the perturbed energy levels of the Kepler
problem using old quantum theory [1]. In his paper, Lenz describes the vector
as “little known” and refers to a popular text by Runge on vector analysis.

In Runge’s text, he makes no claims of originality [1]. In his text, he uses
the vector to illustrate the derivation of the orbit equation from the additional
symmetry. A similar use of the vector will be illustrated below.

Similar to Lenz’s use, in his 1926 paper, Pauli used the LRL vector to derive
the energy levels of the Hydrogen atom without use of the Schrödinger equa-
tion . Here Pauli refers to the vector as “previously utilized by Lenz” [1]. Since
then, it has become popular to refer to the vector as the Runge-Lenz vector, as
it is named in Shankar [7] and other popular quantum contexts.

Unfortunately, and earlier appearance of the vector can be found in Laplace’s
Traté de mécanique celeste [1], in this work, Laplace not only discovers the vector
but goes on to demonstrate its relation to the energyE and angular momentum
L, as will be demonstrated below.

Because of the earlier utilization by Laplace, it has become customary to
describe the vector as the Laplace-Runge-Lenz vector as is done here. Unfor-
tunately, the history goes back further.

As Goldstein notes in his examination of the history [1], some others at-
tribute the vector as originating with Hamilton. He relates such and asks for
others to help in his search for the appearance in Hamilton’s papers.

In a followup note [2], Goldstein relates that reference to the vector can be
found in Hamilton’s July 1845 paper, Applications of Quaternions to Some Dy-
namical Questions, where we derives its existence, where he refers to it as the
“eccentricity vector”, which is closely related to the vector A presented here.
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He goes on to describe how this vector determines the evolution of the mo-
mentum with his “hodograph”, to be illustrated below.

Now, the connection to the hodograph allows us to trace the history further
back as Goldstein notes [2]. In fact, Gibb’s in his Vector Analysis looks at the
hodographs for the Kepler problem and presents it in modern vector notation.
This predates Runge’s analysis by about 20 years.

Goldstein goes on along with other authors to then search for evidence of
the LRL vector as early as Newton’s Principia, but little evidence is found.

Finally, in an added note to his second investigation, Goldstein relates the
work done by Professor Otto Volk in tracing the history of the LRL vector,
where the magnitude of the LRL vector appears as conserved in a work by
Jakob Hermann. In a letter between Hermann and Johnan I. Bernoulli, Bernoulli
goes on to generalize Hermann’s result, in affect giving the direction of the LRL
vector as well as its magnitude.

Goldstein concludes by suggesting an appropriate name might be the Hermann-
Bernoulli-Laplace vector. And in fact, at least one author [8] goes on to call it
the Hermann-Bernoulli-Laplace-Hamilton-Runge-Lenz vector. In this paper
we will stick with the more traditional Laplace-Runge-Lenz vector name.

On the Quantum side of things, we should note a bit about the history as
well. Following the important 1926 paper by Pauli, where he derives the hy-
drogen spectrum purely algebraically (the approach recounted in english by
Valent [9]), Rogers recounts some of the history [6].

Hulthén and Klein showed that the six constants of the Kepler problem
form a Lie algebra isomorphic to O(4), as is hopefully demonstrated below.
Then Fock went on to explicitly demonstrate the degeneracy of the wave func-
tions under such transformations, and in 1936 Bargmann made the connection
between Pauli’s approach and the group theory clear.

Since then, the LRL vector has been quite popular as a simple example of
hidden symmetries. People have gone on to make generalizations of it to apply
to cases with electric and magnetic fields, and relativistic versions as well. For
an introduction to the generalizations, see the review by Leach and Flessas [4].

B Kepler Problem

The Laplace-Runge-Lenz (LRL) vector has its origins in the peculiarities of the
Kepler problem. The vector itself

A = p×L−mkr̂ (LRL Vector)

is an additional conserved quantities for central force problems with an inverse
square potential. Here p is the momentum, L = r×p the angular momentum,
m the mass (or for the two body problem, replace µ = m1m2/(m1 + m2 the
reduced mass). And k is a constant characterizing the strength of the potential.

We are interesting in the general Kepler Problem, i.e. the Hamiltonian

H =
|p|2

2m
− k

r
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This problem is a very interesting one, marked by a great deal of symmetry.
Besides the usual conserved energy E, since the Hamiltonian is rotationally
invariant, we know to expect conservation of the angular momentum L =
r × p.

(a) Derivation

In order to derive the conservation of the LRL vector, we can follow the de-
velopment in Goldstein [3]. Given that our force is central, we can restrict
Newton’s law to the form

ṗ = f(r)
r

r
I.e. the force should point in the radial direction and depend only on r. This
allows us to find a form for

ṗ×L = f(r)
r

r
× (r × p) = f(r)

r

r
× (r ×mṙ)

=
mf(r)
r

[r × (r × ṙ)] =
mf(r)
r

[
r(r · ṙ)− r2ṙ

]
where we have used Laplace’s identity in the last equality. Next we need to be
clever and further simplify the expression by noticing

r · ṙ =
1
2

(ṙ · r + r · ṙ) =
1
2
d

dt
(r · r) =

1
2
dr2

dt
= rṙ

i.e. the radial component of the velocity is just ṙ. Using this, we obtain

ṗ×L =
mf(r)
r

[
rṙr − r2ṙ

]
= mf(r)r2

[
ṙr

r2
− ṙ

r

]
Since L is a conserved quantity, we can write

d

dt
(p×L) = −mf(r)r2

[
ṙ

r
− ṙr

r2

]
= −mf(r)r2

d

dt

[r
r

]
So we’ve made some progress, found and interesting expression. Unfortu-
nately, at this point we are stuck, unless of course f(r) ∝ r−2 such as for the
Kepler problem. This peculiarity enables us to take f(r) = −k/r2 and we ob-
tain

d

dt
(p×L) =

d

dt

(
mkr

r

)
which is to say we have

d

dt

[
p×L−mkr

r

]
= 0

i.e. we’ve found that
A = p×L−mkr

r
is conserved.
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(b) Some Discussion

Now that we have found a new conserved vector for the Kepler problem, the
question remains as to its utility. In particular, we should already be a little
concerned. The one body Kepler problem has 6 degrees of freedom, but we al-
ready have E and L and now A, suggesting 1+3+3 = 7 conserved quantities.
Surely this cannot be the case. In particular, we know that for the Kepler prob-
lem, there is nothing that should tell us the initial time of our motion, leaving,
at most, 5 degrees of freedom that can be conserved. This implies that there
should be some relations between A and E,L. In particular, we notice that if
we take the dot product

A ·L =
[
p×L−mkr

r

]
×L = (p×L)×L−mkr

r
× (r × p) = 0

i.e. A is perpendicular to L at all points of the motion, i.e. it lies in the plane of
motion.

In particular, we can compute the LRL vector at various points in the orbit.
Borrowing from Goldstein [3] (Figure ??) we notice that A lies in the plane of
the orbit, as discussed, is a constant of the motion, and appears to point in the
direction of the symmetry axis of our ellipse.

Figure 1: LBL vector at various points in the orbit. Borrowed from Goldstein
[3].

In order to find the other relation amongst E,L,A we need to look at the
direction A points in detail. We can take the dot product with the radius vector

A · r = Ar cos θ = r · (p×L)−mkr

and permuting the triple product we get the form

A · r = (r × p) ·L = L2
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and we can obtain the equation

Ar cos θ = L2 −mkr

1
r

=
mk

L2

(
1 +

A

mk
cos θ

)
which has the form of a conic section. Interestingly enough, we have found the
orbits of the Kepler problem in terms of the LRL vector.

Comparing this with the standard solution for the orbit [3]

1
r

=
mk

L2

(
1 +

√
1 +

2EL2

mk2
cos(θ − θ′)

)

we find that we can write

A2

m2k2
= 1 +

2EL2

mk2

which gives us
A2 = m2k2 + 2mEL2

Which is precisely the other relation we were seeking.
Sanity returned we discovery that among our supposed 7 conserved quan-

tities we have 2 relations, bringing the number back down to 5, as is to be ex-
pected. So, if we take our energy E and angular momentum L as our primary
conserved quantities, then the addition of A only gives us a single additional
conserved degree of freedom? Where does this peculiar symmetry arise?

We are still left with the peculiarity of the Kepler problem, given that it
is completely integrable. The appearance of the unique conserved vector de-
pended on our force law being inverse square. There is another peculiarity as-
sociated with inverse square laws, in particular, we know them to admit closed
orbits according to Bertran’s Theorem [3].

So, it would appear as though our peculiar symmetry, the LRL vector seems
to be tied with the fact that our orbits are closed.

With this realization, we might expect something akin to the LRL vector for
different problems, in particular Bertand’s Theorem would suggest an analog
to the LRL vector for the harmonic oscillator in particular, the other potential
that admits closed orbits.

We will leave the investigation of the corresponding harmonic oscillator
case until later.

(c) Hodographs

So, from our pictorial investigation, we are lead to believe that our LRL vector
points in the direction of the symmetry axis of our orbit. In fact, as Goldstein
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recounts [2], Hamiltonian may have been the first to utilize the LRL conser-
vation. He referred to it as the eccentricity vector, where if we rearrange our
expression as

mk
r

r
= p×L−A

and take the dot product of it with itself, we obtain

(mk)2 = A2 + p2L2 + 2L · (p×A)

and now choosing L to be along the z axis and the major semiaxis along the x
we obtain [2]

p2
x + (py −A/L)2 = (mk/L)2

but this gives us an interesting representation for the momentum vector. In fact
it illustrates that the momentum should just travel around a circle of radius
mk/L centered A/L away from the center of force perpendicular to A.

C Hydrogen Atom

Another interesting problem that fits the bill for the above description (1) cen-
tral force, and (2) inverse square force, is the Hydrogen atom. Just as before we
have the Hamiltonian

H =
p2

2m
− e2

r

which has the same form. As we know, borrowing from Shankar, we have
energy levels [7].

Enlm = −me
4

2~2

1
n2

which we notice depends only on n and not l or m. We have a great deal of
degeneracy in the orbitals of the hydrogen atom. Not only do the energy levels
not depend on m, corresponding to the rotational symmetry, but neither do
they depend on l, a much deeper symmetry, which we might suspect to be
linked to our LRL vector.

(a) Quantum LRL

So, we suspect the high level of symmetry should derive from the LRL vector
just as it did in the classical case. As such, we begin by attempting to look for
a quantum analog to:

A = p×L−mkr

r

or in this case we will use a slight modification

N =
p×L

m
− e2

r
r
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which suggests a particular quantum form, taking care to ensure Hermiticity

N̂ =
1

2m

[
P̂ × L̂− L̂× P̂

]
− e2

r
R̂

using hats to denote the quantum operators.
Lucky for us, this operator manages to commute with the Hamiltonian.

With a conservative force P̂ we know commutes, and the rotational symmetry
ensures that so do R̂, L̂. So we have [N̂ , Ĥ] = 0. This implies that it should act
as the generator of some symmetry.

Having found the corresponding operator, it would be nice to see how it
generates the degeneracy. This can be accomplished following the procedure
in Shankar [7]. We need to express N̂ in spherical form

N̂±1
1 = ∓Nx ± iNy√

2
N̂0

1 = Nz

Having done this we can consider having our N̂1
1 operator act on a state

| nll〉. We know that this should produce a state with the same energy since
our operator commutes with the Hamiltonian [N̂1

1 , H] = 0. So what does our
operator due to our state? Well, we know that N̂1

1 | nll〉 should behave like
| 11〉⊗ | ll〉 =| l + 1, l + 1〉 i.e. we have

N̂1
1 | n, l, l〉 = c | n, l + 1, l + 1〉

And we’ve done it. We can use the quantum analogy to the LRL vector to
demonstrate the degeneracy in the different l levels.

D Poisson Brackets

Drawing from our experience with the Quantum application, it might be useful
to look into the algebraic structure of the LRL vector. First lets revisit the Pois-
son brackets for the angular momentum vector. Again drawing from Goldstein
[3] we know:

{Li, Lj} = εijkLk

But this structure is the same as for the generators of rotation in three dimen-
sional space. I.e. the group of transformations generated byLi can be identified
with SO(3).

Or, to be clear, lets follow the notation of Rogers [6] and write

L = r × p

D =
1√
−2mE

[
p×L

mk
− r

r

]
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In order to discover the SO(4) structure that these imply, consider looking
at the two linear combinations

M =
1
2
(L + D) N =

1
2
(L−D)

These new guys have the following Poisson structure

{Mi,Mj} = εijkMk

{Ni, Nj} = εijkNk

{Ni,Mj} = 0

But at this point, it should be clear that the structure created by L,D is that
of SO(3)⊗ SO(3) or in other words SO(4).

So we’ve done it. We have investigated the structure defined by the angu-
lar momentum and LRL vector in concert and now see that we should expect
a great deal of symmetry in the Kepler problem, namely SO(4) or a 4 dimen-
sional rotational symmetry.

Unfortunately for us, this deeper symmetry is not clear in our usual coor-
dinates [6]. In order to better appreciate its appearance

E Geometric Treatment

The difficulty of finding coordinates that represent the symmetry was handled
in a rather nice geometric way by Rogers. Here, he suggests considering the
approach used by Fock when he investigated the Hydrogen Atom. Here our
aim would be to project the momentum space stereo-graphically onto the 3-
sphere. Fortunately for the case of negative energy bound orbits, we saw that
the motion in momentum space was particularly simple, in the form of the
hodographs, i.e. the momentum traces out a circle. Under a stereographic
projection, we expect our circles to be mapped to circles on the 3-sphere. So, if
we wish to describe a symmetry between the orbits in momentum space, we
are interesting in mapping circles to circles on the 3-sphere.

At this point, Rogers suggests the mapping [6]

P =
2pop

p2
0 + p2

P4 =
p2 − p2

0

p2
0 + p2

where we identify
p0 =

√
−2mE

These four coordinates satisfy the condition

P 2 + P 2
4 = 1

And in addition to a mapping for the momentum, we wish to also find a
mapping for the coordinates in configuration space. Here orbits are ellipses,
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which themselves could be parallel projections on the sphere. We consider
(again following Rogers [6]).

R =
r

r
− r · p

mk
p R4 =

p0

mk
r · p

These two are not independent and satisfy

R2 +R2
4 = 1

and in particular these coordinates are themselves orthogonal to one another

R · P +R4P4 = 0

So we have in total 8 coordinates with 3 constraints or only 5 specifications.
We are missing one dimension in our 6 degree of freedom system, and we will
take it to be E.

We can obtain the inverse relations:

r = − k

2E
[(1− P4)R +R4P ] p =

√
−2mE

P

1− P4

So at this point, hopefully what we have accomplished is a simplification of
our equations, thereby highlighting the high degree of symmetry.

At this point, Rogers goes on to demonstrate how we can properly under-
stand these new coordinates in terms of quaternions [6]. Once he reviews the
quaternion algebra, he is in a position to give a proper geometrical interpre-
tation of the result. Unfortunately, I do not feel comfortable enough with his
approach to recount it here.

An alternative way to see the O(4) symmetry is given by Moser [5]. In his
account, the transformations are more direct and less geometric.

F Conclusion

Having demonstrating the appearance and utility of the LRL vector to some
physical problems, hopefully an appreciation for the depth of the correspond-
ing symmetry was conveyed.
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